This article was downloaded by: [University of California, San Diego]

On: 15 August 2012, At: 23:25 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl19

Photoluminescence of Aggregated C₆₀ in Nano-Size at Room Temperature

Hai-Ning Cui ^{a b} , Eung Ryul Kim ^a & Haiwon Lee ^a Department of Chemistry, Hanyang University, Seoul, 133-791, Korea

^b Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China

Version of record first published: 24 Sep 2006

To cite this article: Hai-Ning Cui, Eung Ryul Kim & Haiwon Lee (2001): Photoluminescence of Aggregated C_{60} in Nano-Size at Room Temperature, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 371:1, 333-336

To link to this article: http://dx.doi.org/10.1080/10587250108024754

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Photoluminescence of Aggregated C_{60} in Nano-Size at Room Temperature

HAI-NING CUI^{a,b}, EUNG RYUL KIM and HAIWON. LEE^{a*}

^aDepartment of Chemistry, Hanyang University, Seoul, 133-791, Korea and ^bLaboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 P.R. China

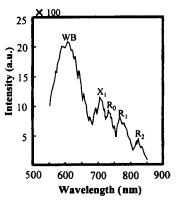
When the aggregation of C_{60} is arranged in mono-dispersed state on the ITO substrate, the photoluminescence (PL) spectra are observed clearly. These emission peaks are attributed to recombination of self – trapped excitons, the zero-phonon exciton (R_0) and its phonon replicas.

Key words: fullerene; UV-vis spectra; photoluminescence

INTRODUCTION

Photoluminescence (PL) and UV-vis spectroscopy are ones of the most powerful tools to investigate the properties of isolated C_{60} , C_{60} compounds and crystalline C_{60} . Many groups have studied the PL properties of C_{60} molecules in solution ^[1, 2] and solid in different morphologies such as single crystal ^[3], films and polycrystalline powder ^[4-6]. It has been reported that there is only weak or no luminescence of C_{60} in solution and solid state at room

^{*} Corresponding author. E-mail: haiwon@email.hanyang.ac.kr


temperature $^{[7,8]}$. In this paper we prepared some solid state C_{60} on the indium tin oxide (ITO) substrate, which exhibits room-temperature fluorescence spectra.

EXPERIMENTAL SECTION

Gold grade C_{60} was obtained from Hoechst (Germany).1,2-Dichlorobenzene (DCB) and ITO-glass was purchased from Sigma-Aldrich and Corning Company, respectively. The C_{60} solution (0.1 mg/ml) was dropped onto substrate and aggregated C_{60} was formed after drying at room temperature for 48 hours. The PL synchronous spectra were obtained using a spectrofluorometer (ISS -PC1).

RESULTS AND DISCUSSION

Figure 1 shows the synchronous spectrum of the C_{60} . These peak positions and some values of references are shown in Table 1. The strong PL band of 616 nm originate from C_{60} 's electron transition under the state

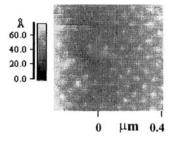


FIGURE 2 AFM micrograph of nano aggregation state of C_{60}

FIGURE 1 The synchronous spectrum of C_{60} photoluminescence.

called Zero-phonon line (R_0) at 720~738 nm is attributed to an exciton-polaron recombination (or self-trapped emission) ^[9, 10]. The exciton

complex derives a strong electron-vibration coupling on the C_{60} cluster, but only very weak R_0 peaks are observed in Fig. 1. It means that there are few C_{60} clusters. The AFM results support that C_{60} molecules are dispersed in nano-size as shown in Fig. 2. According to the ref.11, the emitting bands $R_1(765 \text{ nm})$, $R_2(827 \text{ nm})$ and $R_3(873 \text{ nm})$ are attributed to phonon replicas of the R_0 respectively. The peak X_1 is attributed to the transition of t $_{1u}$ and h $_{u}$ levels corresponding to surface which is related exciton states and connected to the lattice distortions of the grains. The electronic

Table 1. PL spectra at various substrates

Substrate.	Temp /K	WB /nm	X ₁ / nm	R ₀ / nm	R ₁ / Nm	R ₂ / Nm	R ₃ / nm	Reference
GaSe	15	Î	700	738	765	827	873	[11]
Au	15		720	729	752	800		[11]
Doped Al ₂ O ₃	320	619		690				[8]
Quartz	270			727			841	[9]
Silicon	10 ~ 320			727				[12]
ITO	320	618	708	728	779	827		This work

hybridization occurs between C_{60} and the substrate. Our spectrum looked like the combination or overlap effect of wide band (520 nm ~ 750 nm) of ref. 8 ^[8] and R_1 , R_3 narrow emission peaks of ref.11 ^[11]. In Table 1 all the peak positions are of a little different.

The shift of the emission peaks is due to electron transition of the C_{60}^+ or C_{60}^{+n} , because the distance between h u and t lu increased due to the ionization. While the interface of the C_{60} on oxide surfaces changed, the oxygen dangling bonds also changed. Capozzi and co-workers ^[9] reported the positions of R_1 and R_2 bands shifted to longer wavelength. The ratio values of R_0/R_2 and R_0/R_2 become small eventually while the temperature increases from 10 K up to 270 K. Table 1 clearly shows that our results are similar to the characteristics at the high temperature condition. In our experiments, no PL spectra were observed with pure C_{60}

powder, C_{60} solution (0.1 and 2 mg/ml) and thin film on quartz, but the synchronous spectra of PL were observed in the form of aggregated C_{60} on ITO substrate under the same conditions due to the slow deposition rate of solid $C_{60}^{[11]}$ and lattice matching property between C_{60} and substrate^[11]. Nearly mono-dispersed C_{60} aggregation of C_{60} can decrease non-radiative recombination. Xenon Arc lamp instead of laser as a excitation light source can help obtaining synchronous spectra.

CONCLUSION

Mono-dispersed state of C₆₀ was prepared on the ITO substrate, and its photoluminescence spectra are attributed to recombination of self – trapped excitons, the zero-phonon exciton and its phonon replicas.

ACKNOWLEDGEMENT

This work was partially supported by a program of National Research Laboratory, the Ministry of Science and Technology (Grant Number: 99-N-NL-01-C-103).

Reference

- [1] Y. Wang, J. Phys. Chem. 96, 764(1992)
- [2] A. Itaya, I. Suzuki, Y. Tsuboi, and H. Miyasaka, J. Phys. Chem. B, 26, 5119(1997).
- [3] Y. Iwasa, T. Koda, and S. Koda, Synth. Met. 55, 3033(1993)
- [4] A. D. Xia, S. Wada, and H. Tashiro, Applied Phys. Lett., 73(10), 1323(1998)
- [5] M. Diehl, J. Dejen, H. H. Schmidtke, Ber. Bunsenges, Phys. Chem., 97, 908(1993)
- [6] S. Saito and A. Oshiyama, Phys. Rev. Lett., 66, 2637(1991)
- [7] J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, and F. N. Dicderich, J. Phys. Chem. 95, 11(1991).
- [8] D. Wang, J. Zuo, Q. Zhang, Y. Luo, Y. Ruan, Z. Wang, J. Appl. Phys. 81, 1413(1997).
- [9] V. Capozzi, G. Casamussima, G. F. Lorusso, A. Minafra, R. Piccolo, T. Trovato, A. Valentini, Solid State Commun., 98, 853(1996).
- [10] W. Kratscmer, L. D. Lamb, K. Fostivopoulos and D. R. Huffman, Nature (London), 347, 354 (1990).
- [11] V. Capozzi, T. Trovato, H. Berger and G. F. Lorusso, Carbon, 35, 763(1997).
- [12] M. Matus and H. Kuzmany, Phys. Rev. Lett., 48, 2882(1993).